If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2-30=180
We move all terms to the left:
2x^2-30-(180)=0
We add all the numbers together, and all the variables
2x^2-210=0
a = 2; b = 0; c = -210;
Δ = b2-4ac
Δ = 02-4·2·(-210)
Δ = 1680
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1680}=\sqrt{16*105}=\sqrt{16}*\sqrt{105}=4\sqrt{105}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{105}}{2*2}=\frac{0-4\sqrt{105}}{4} =-\frac{4\sqrt{105}}{4} =-\sqrt{105} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{105}}{2*2}=\frac{0+4\sqrt{105}}{4} =\frac{4\sqrt{105}}{4} =\sqrt{105} $
| 9b=27b= | | 7*10^x=700 | | -2x+6=-10x–1 | | 9x+87=236 | | 2/3x-5/6=-5/13x+1/4 | | 30+5=x | | 17=n-18 | | 40.32=3.6x | | 7x+27=37 | | y+10+y2y=8. | | 4g−10=10+2g | | a−–5=21 | | 3x+7=5x–10 | | 93+y=42 | | 3h=–9+2h | | -5n(5n-8)=0 | | 3.5(6.4+x=) | | 14k+5k-14k=20 | | 3x-0.1=3 | | 7g-3g-2g=6 | | 325=c^2 | | 3b-9=(-15) | | 17=r+3 | | x^2-110=0 | | -6-4x=-58 | | x-9-5=12 | | 67=8x-93 | | 3k=310 | | 39=23.4+4.5x | | 150-1.5x=20-2.5x | | 31^2+x^2=481^2 | | (42)+(75)=(6x+15) |